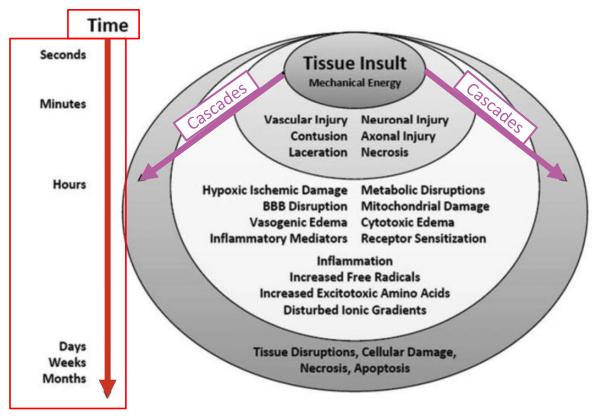


Micronutrients & Co. for concussion Scientific data, possibilities and limitations

BEATE KEHRLI

CHIEF SCIENTIFIC OFFICER, CSO BURGERSTEIN VITAMINE, 8640 RAPPERSWIL


PHARMACIST, MAS ETH NUTRITIONAL SCIENCE

© The presentations and training materials produced by the Burgerstein Foundation are protected by copyright. These materials may only be used by training participants for personal use. Any further use, reproduction, distribution or publication, even in part, is prohibited without the prior written consent of the Burgerstein Foundation. Violations may result in legal consequences.

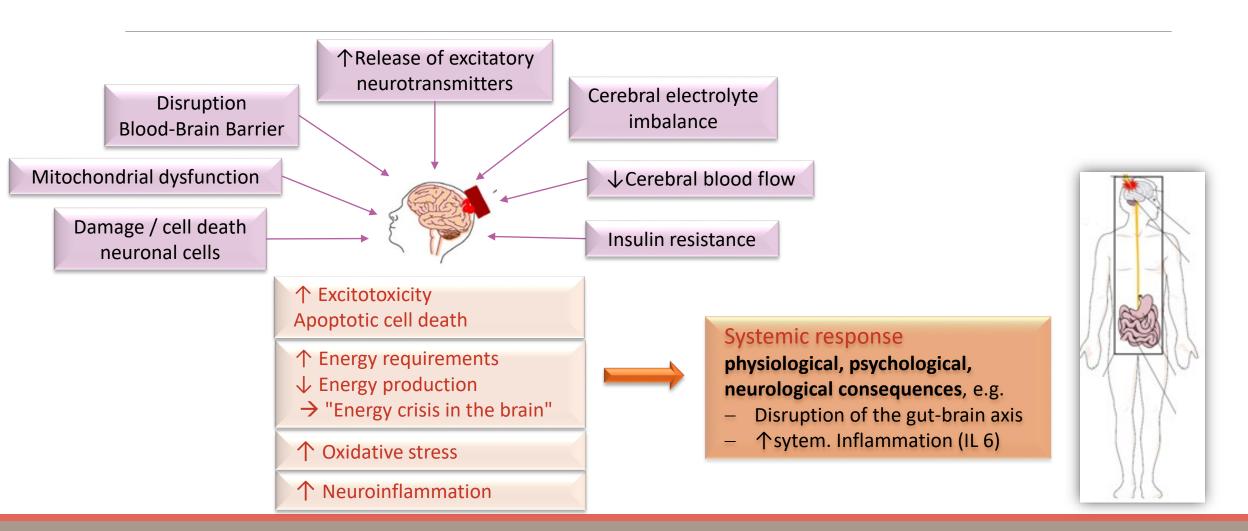

Pathophysiological cascades of TBI

Fig. 1. The primary injury of TBI is caused by a transfer of mechanical injury to the brain tissue. This is followed by the secondary injury that occurs over minutes to hours to days and even weeks and months. It is characterized by numerous metabolic and biochemical cascades that may cause more damage than the initial tissue insult itself.

Pathophysiology

Nutrition

Special interventions needed for mTBI / sports concussion?

Hypermetabolism / catabolism

- In severe TBI: up to > 70 % malnourished → increased morbidity/mortality
- Reasons:
 - — ↑ energy requirements, ↑ catabolism (inflammation, immobility)
 - Delayed gastric emptying (45-50% of TBI patients)
 - Nausea / vomiting, less appetite / disturbances smell taste... → «Eating as a burden»
 - → Risk of negative energy balance, malnutrition
- In mTBI: not so pronounced; focus if noticeable impairment daily life after injury (symptoms above)

Avoid malnutrition

Target nutrition:

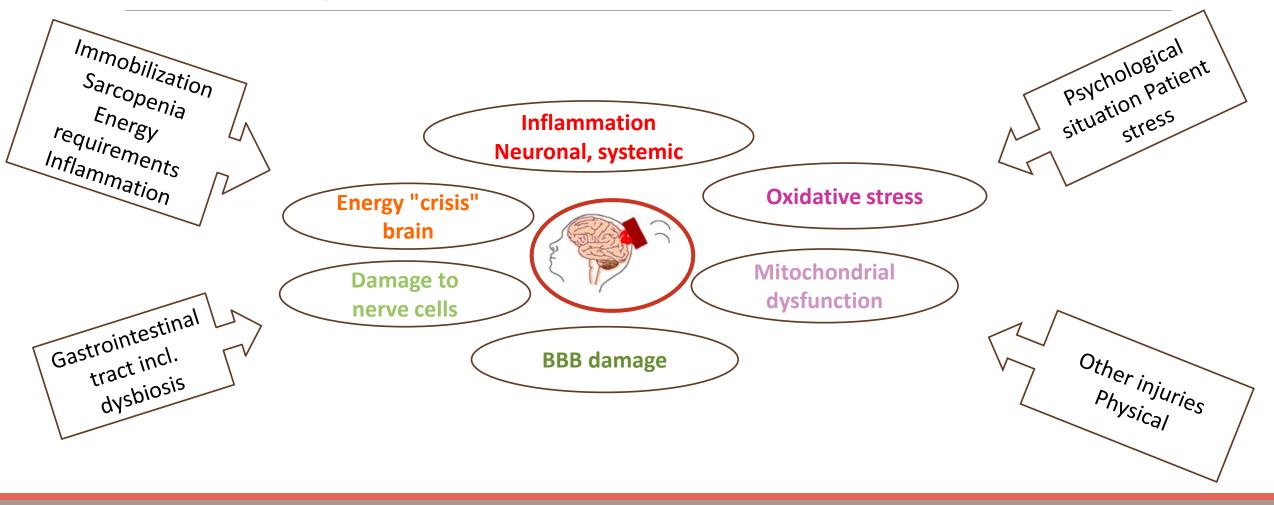
- Adequate supply of energy, protein / nutrients and micronutrients (cachexia / sarcopenia)
- Choose a well-tolerated form (liquid, concentrated drinkable food)
- → Also: avoid directly stimulating substances such as caffeine etc., alcohol and too much fructose in the acute phase

Therapy options medical supplements micronutrients & Co.

Scientific data on supplements for (m)TBI

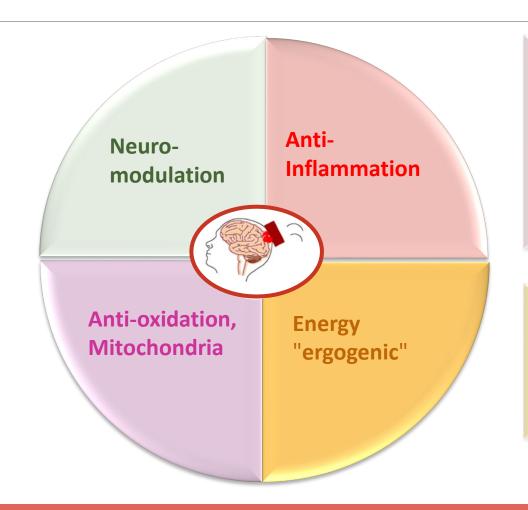
Quite scientific literature available; often reviews, meta-analyses

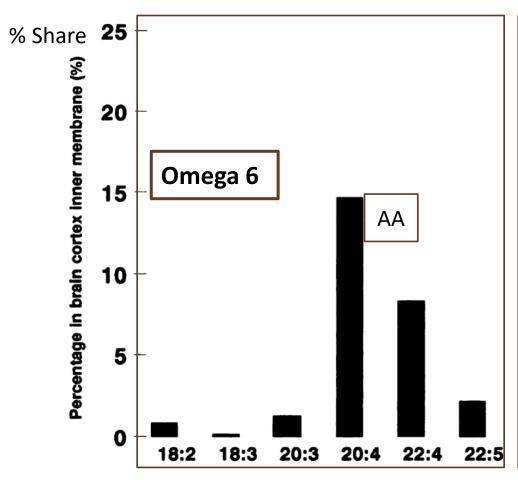
- Numerous papers on nutrients in TBI are detailed reviews, meta-analyses, often small studies (case studies, hardly any classic RCTs)
- TBI models are used frequently

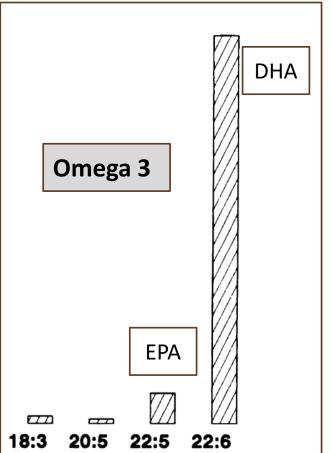

Reason: RCTs difficult to conduct

- Standardization patients / standards diagnosis / tools with high subjectivity etc.

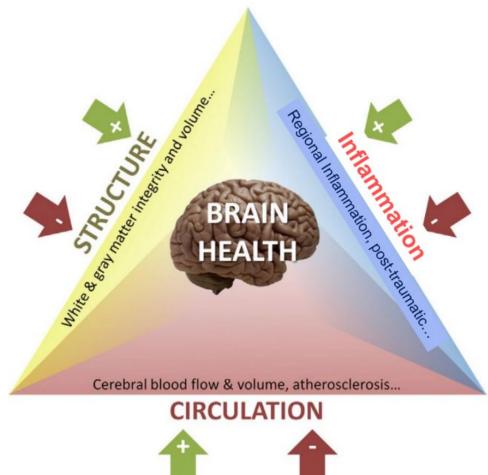
Important: differentiate between mild TBI (concussion) and more severe brain injuries, where the overall situation is even more complex and mortality also increases

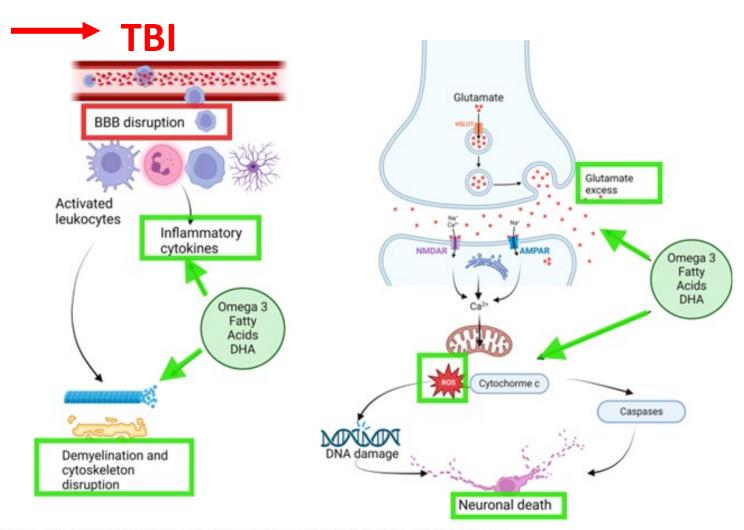

Challenges


- Omega 3 (DHA-focus)
- Magnesium
- B vitamins/ B2/ choline
- Phosphatidylserine
- Zinc
- Vit D
- Lutein/ Zeaxanthin?
- Omega 3 (DHA-focus)
- Quercetin / Resveratrol
- N-acetylcysteine
- Alpha lipoic acid (ALA)
- -Q10



- Omega 3 (DHA-focus)
- Curcuma, Boswellia
- Resveratrol / Berry polyphenols
- Vitamin D
- Selenium
- Zinc
- Vitamin B2
- Creatine
- BCAA / EAA
- Taurine
- L-glutamine


Fatty acids share human brain



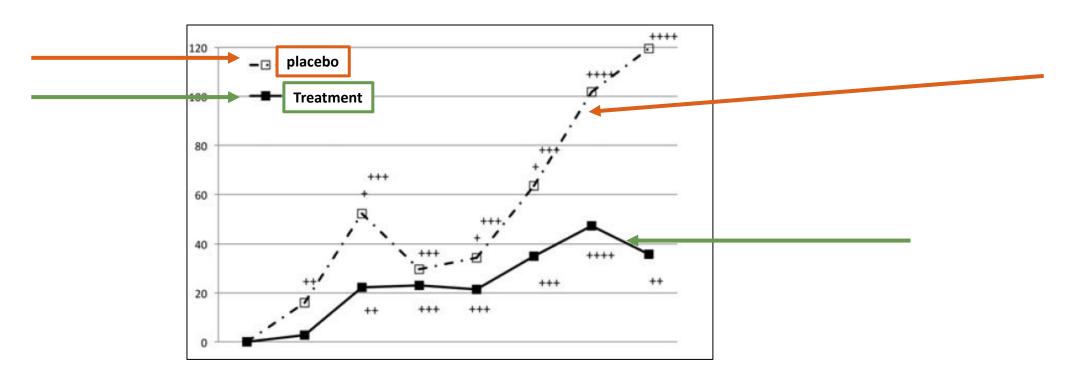
Omega-3 and brain

Omega-3 and TBI

- Reduction of neuro-inflammation
- Reduction of excitotoxicity
- Reduction of oxidative stress
- Improve synaptogenesis
- Support cognition
- Support faster recovery

Figure 1. Target Pathways of Omega-3 Fatty acids. Created with biorender.com.

Graphic adapted from: Lucke-Wold BP et al. 2025


Omega 3 dosages

- Omega 3 dosages in the range 2000 3,600 mg (up to 6 g) EPA plus DHA
- Choose products high in DHA (DHA in the range 1,500 > 2,000 mg per day)
- Caution:
 - Pay attention to the amount of especially DHA in the dosages (not the total amount of fish oil)!
 - Take preferably once daily and always WITH a main meal containing fat
- → Can be used **prophylactically** in cases of previous / increased risk of recurrent TBI
- → Reduction of axonal damage, apoptosis, neuroprotective

Omega 3: also preventive

Effect of supplementation on NFL* levels in starters (placebo, 2g, 4g, 6g)

Averaged over dosages

B vitamins / vitamin B2

Important functions overview

- Energy metabolism
- Nerve function
- Neurotransmitter synthesis
- Cell division
- DNA synthesis / methylation
- Amino acid metabolism
- Neuroprotective
- Antioxidant

TBI and B vitamins

- Repair / regeneration of nerve tissue, cells
- Synaptogenesis
- ↓ Neurotoxicity, excitotoxicity

Dosages

- Use a balanced combination of all important B vitamins ("B complex")
- Also, higher doses in the medium term (B2: 400 mg/day)
- B6 not long-term > 12.5 mg (UL EFSA)

Magnesium

Important functions Overview

- Neurotransmitter synthesis
- Stabilization of cell membrane
- Important for nerve cell excitability
- Neuroprotective
- Protein balance
- ...

TBI and magnesium

- → Mg level after TBI / Mg homeostasis disturbed
- ↑ Risk of prolonged symptoms
- Protective role against overexcitation (excitotoxicity / apoptosis)
- After supplementation:
 - — ↑ somatic scores (e.g. GCS*) in patients with
 - Improvement of acute symptoms, faster recovery

Dosages

- In the range of 200 (-400) mg/day
- Replace losses / aim good supply

*GCS: Glasgow Coma Scale

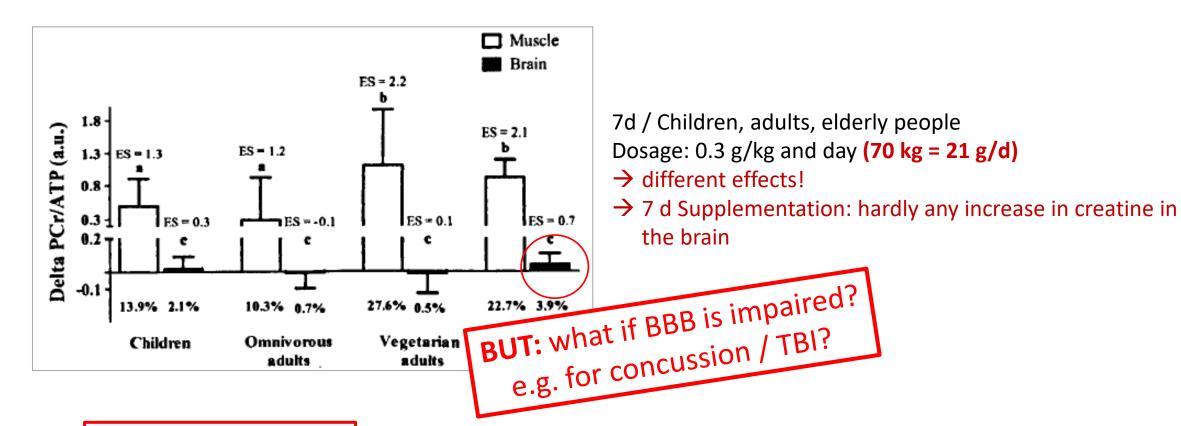
Creatine

Important functions Overview

- Energy balance (ATP)
- Intracellular buffer
- Mitochondrial function, Antioxidant
- 95% found in skelet. muscles...
- Neuromodulation? (at synapses)
- Brain:
 - Own synthesis of Cr
 - Via BBB via transporter protein (small capacity with intact BBB)

Creatine

Creatine and TBI


- Regulation / promotion of energy balance after mTBI (first phase)
 - Hyper-/ hypo-metabolism
- Support of mitochondrial function
- Neuroprotection (buffer, antiox)
- Too little creatine → massive disruption of neuronal function

Dosages

- In studies often very high doses (4 x 5 g) or with tube feeding (0.3 0.4 g/kg bw), longer term (6 mths)
- Many studies on TBI animal models / high doses
- Moderate doses useful in the longer term (3-5 g/d) –compliance...
- Prophylactic use is discussed (high risk athletes)

Creatine uptake brain

Difference muscle/brain

Vitamin D3

Important functions Overview

- Ca homeostasis
- Immunomodulatory
- Inflammation modulation
- Cell cycle control
- Neurological/muscular function
- Neuroprotective
- Brain
 - own VitD receptors
 - own Vit D metabolism (enzymes for activation)
 - Calcitriol levels do not correlate with plasma (25-OH does)

Vitamin D3

TBI and vitamin D3

- Calcitriol: neuroprotective effects
- ↑ Regenerative processes of the brain
- ↓Ca-influx / excitotoxicity
- Severity of TBI has a significant relationship with patients' levels of Vitamin D
- Severe TBI: suppl. of Vitamin D improved GSC

Dosages:

- Acute ≥ 50 mcg / 2000 IU/day
- Aim for good levels
- In some studies, single administration of very high doses (?)

*GCS: Glasgow Coma Scale

Zinc

Important functions Overview

- Cofactor > 300 enzymes
- Central function in neurobiology
- Antioxidant
- Anti-inflammatory
- ↓ Apoptosis / cell death
- Protein balance
- ...

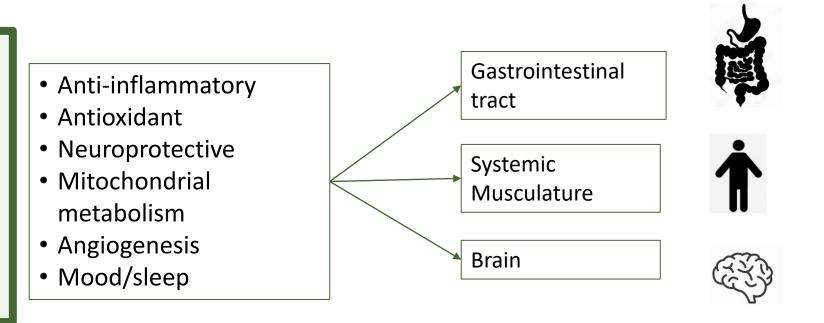
TBI and zinc

- Zinc depletion (urinary excretion 个)
- Locally high concentrations can occur in more severe brain injuries (release from tissue)
- Zinc too low: ↑ risk of cell death
- Sufficient zinc:

 Risk of long-term psychological symptoms (depression feared consequence of TBI, e.g.)
- Improvement in GCS*, protein balance

Dosages

- Not too high doses, only p.o.
- In the range of 20 mg/day
- Replace losses / aim for good supply → "neuronal recovery"


*GCS: Glasgow Coma Scale

Plant substances

Boswellia (frankincense)
Curcuma
Resveratrol
Berry extract
Quercetin
Saffron

Rhodiola

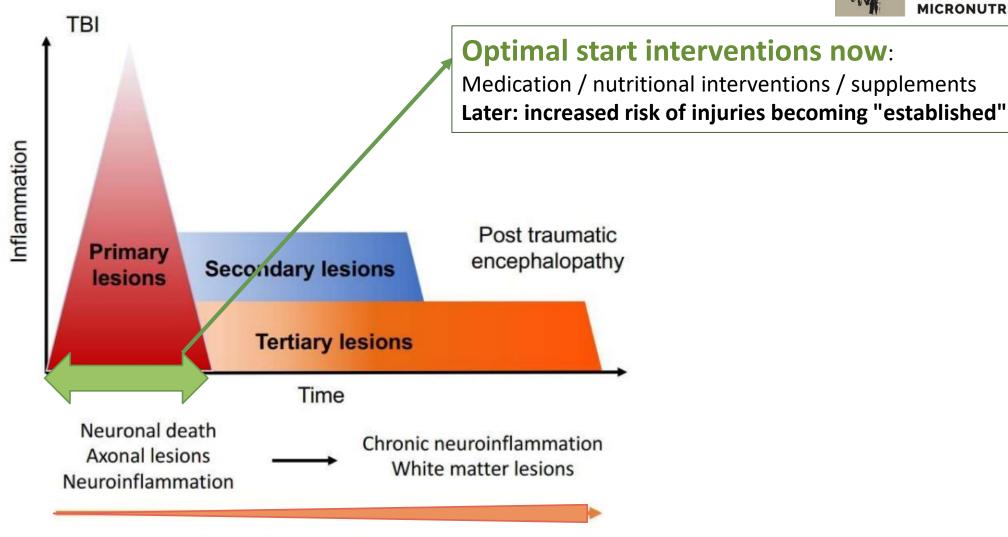
Use of plant substances: Set priorities and prioritize 1 -2 of them, dose correspondingly **Attention:** extracts should be standardized - choose dosages appropriately!

Other substances

- N-acetylcysteine
- Alpha-lipoic acid
- Vitamin E, vitamin C
- Amino acids, AS-like
 - taurine, L-glutamine, L-arginine, L-carnitine
 - BCAA, EAA
- Phosphatidylcholine
- Citicoline / Citicholine
 - Building component phosphatidycholine
- Probiotics
- Melatonin

antioxidant anti-inflammatory neuroprotective

energy metabolism
Neurotransmitter metabolism


regeneration of neurons nootropic

dysbiosis

Neurotransmitters, sleep

Medication (severe forms of TBI, e.g. corticoids, EPO, antidepressants)

Neurodegeneration

Brain is not an isolated organ!

Injuries result in cascades of processes - effects not only local, but systemic Record the course / progression of symptoms (consider individuality)

Nutrition: Prevent malnutrition - in severe TBI cave sarcopenia, cachexia!

- Sufficient energy / 3 protein pulses with meals, possibly + 1 additional in phases with a lot of lying down
- Sufficient micronutrients

Medical supplements: according to the severity of the injury

- Omega 3/DHA -focused
- Suitable combination of vitamins, minerals, plant extracts
- ! Set priorities especially with additional plant extracts
- Supplement long enough, make adjustments
- Check individualized options for medical supplements (personalized mixtures / formulations)

Medical supplements in the recovery of (m)TBI ...

... an interesting component mainly addressing the amelioration in the progression of neuroinflammatory and neurodegenerative processes...

...useful as a complement to other important measures, but not a substitute for them.

Literatur

online

- https://www.mayoclinic.org/diseases-conditions/chronic-traumatic-encephalopathy/symptoms-causes/syc-20370921
- AIS: Concussion and Brain Health Position Statement 2024 (https://www.concussioninsport.gov.au/)

Paper

- Ashbaugh A, McGrew C. The Role of Nutritional Supplements in Sports Concussion Treatment. Curr Sports Med Rep. 2016 Jan-Feb;15(1):16-9.
- Bailes JE et al. Omega-3 fatty acid supplementation in severe brain trauma: case for a large multicenter trial. J Neurosurg. Published online May 15, 2020.
- Barrett EC et al. ω-3 fatty acid supplementation as a potential therapeutic aid for the recovery from mild traumatic brain injury/concussion. Adv Nutr. 2014;5(3):268-277.
- Cassol G et al. Potential therapeutic implications of ergogenic compounds on pathophysiology induced by traumatic brain injury: A
 narrative review. Life Sci. 2019;233:116684.
- Conti F et al. Mitigating Traumatic Brain Injury: A Narrative Review of Supplementation and Dietary Protocols. Nutrients. 2024 Jul 26;16(15):2430.
- Cope EC et al. Improving treatments and outcomes: an emerging role for zinc in traumatic brain injury. Nutr Rev. 2012;70(7):410-413.
- Curtis L, Epstein P. Nutritional treatment for acute and chronic traumatic brain injury patients. J Neurosurg Sci. 2014;58(3):151-160.
- Erdman et al. Institute of Medicine (US) Committee on Nutrition, Trauma, and the Brain. Nutrition and Traumatic Brain Injury:
 Improving Acute and Subacute Health Outcomes in Military Personnel. Washington (DC): National Academies Press (US); 2011.
- Finnegan E et al. Nutritional interventions to support acute mTBI recovery. Front Nutr. 2022 Oct 14;9:977728.
- Forbes SC et al. Effects of Creatine Supplementation on Brain Function and Health. Nutrients. 2022;14(5):921.

- Freire Royes LF, Cassol G. The Effects of Creatine Supplementation and Physical Exercise on Traumatic Brain Injury. Mini Rev Med Chem. 2016;16(1):29-39
- Giza CC, Hovda DA. The new neurometabolic cascade of concussion. Neurosurgery. 2014;75 Suppl 4:S24–33.
- Howell DR, Southard J. The Molecular Pathophysiology of Concussion. Clin Sports Med. 2021 Jan;40(1):39-51.
- Jacquens A et al. Neuro-Inflammation Modulation and Post-Traumatic Brain Injury Lesions: From Bench to Bed-Side. Int J Mol Sci. 2022 Sep 23;23(19):11193.
- Khan H et al. Neuroprotective Effects of Quercetin in Alzheimer's Disease. Biomolecules. 2019;10(1):59. Published 2019 Dec 30.
- Lai JQ et al. Progress in research on the role of clinical nutrition in treating traumatic brain injury affecting the neurovascular unit. Nutr Rev. 2023;81(8):1051-1062.
- Lawrence DW, Sharma B. A review of the neuroprotective role of vitamin D in traumatic brain injury with implications for supplementation post-concussion. Brain Inj. 2016;30(8):960-968.
- Lee HY, Oh BM. Nutrition Management in Patients With Traumatic Brain Injury: A Narrative Review. Brain Neurorehabil. 2022 Mar 28;15(1):e4.
- Lucke-Wold BP et al. Supplement and nutraceutical therapy in traumatic brain injury. Nutr Neurosci. 2025 Jun;28(6):709-743.
- Lucke-Wold BP et al. Supplements, nutrition, and alternative therapies for the treatment of traumatic brain injury. Nutr Neurosci. 2018 Feb;21(2):79-91.
- Lucke-Wold BP et al. Linking traumatic brain injury to chronic traumatic encephalopathy: identification of potential mechanisms leading to neurofibrillary tangle development. J Neurotrauma. 2014; 31(13):1129–38
- Newman JM et al. Neuroprotection and Therapeutic Implications of Creatine Supplementation for Brain Injury Complications. Med J (Ft Sam Houst Tex). 2023 Apr-Jun; (Per 23-4/5/6):31-38.

- Oliver JM et al. Effect of Docosahexaenoic Acid on a Biomarker of Head Trauma in American Football. Med Sci Sports Exerc. 2016;48(6):974-982.
- Patel PR et al. Brain Injury: How Dietary Patterns Impact Long-Term Outcomes. Curr Phys Med Rehabil Rep. 2023;11(3):367-376.
- Poblete RA et al. Optimization of Nutrition after Brain Injury: Mechanistic and Therapeutic Considerations. Biomedicines.
 2023;11(9):2551.
- Ryan T et al. A Potential Role Exists for Nutritional Interventions in the Chronic Phase of Mild Traumatic Brain Injury, Concussion and Sports-Related Concussion: A Systematic Review. Nutrients. 2023;15(17):3726.
- Scrimgeour AG, Condlin ML. Nutritional treatment for traumatic brain injury. J Neurotrauma. 2014;31(11):989-999.
- Sharma S et al. Neuroprotective Role of Oral Vitamin D Supplementation on Consciousness and Inflammatory Biomarkers in Determining Severity Outcome in Acute Traumatic Brain Injury Patients: A Double-Blind Randomized Clinical Trial. Clin Drug Investig. 2020;40(4):327-334.
- Solis MY et al. Effect of age, diet, and tissue type on PCr response to creatine supplementation. J Appl Physiol (1985). 2017;123(2):407-414.
- Sulhan S et al. Neuroinflammation and blood-brain barrier disruption following traumatic brain injury: Pathophysiology and potential therapeutic targets. J Neurosci Res. 2020 Jan;98(1):19-28.
- Visser K et al. Blood-based biomarkers of inflammation in mild traumatic brain injury: A systematic review. Neurosci Biobehav Rev. 2022 Jan;132:154-168.
- Zafonte RD et al. Effect of citicoline on functional and cognitive status among patients with traumatic brain injury: Citicoline Brain Injury Treatment Trial (COBRIT). JAMA. 2012;308(19):1993-2000.